Category Archives: Atrial Fibrillation

Apple’s Alternative Facts And The Giant Watch Restaurant Next Door To AliveCor

As I pointed out Friday,  Apple’s claim that the ECG sensor on their new Apple Watch 4  (available “later this year”) is  “the First ECG product offered over the counter directly to consumers” is totally bogus.

AliveCor’s Kardia mobile ECG device was approved by the FDA  for over the counter direct to consumer sales on February 10, 2014. Apple had to have known this as they worked with AliveCor to bring the first Apple Watch based ECG device to FDA approval in 2017.

I tried but failed to get AliveCor founder Dr. David Albert’s thoughts on Apple’s disinformation but Yahoo finance was able to speak to Vic Gundotra, the CEO of AliveCor:

Over at the headquarters of AliveCor, a startup based in Google’s hometown of Mountain View, they, too, were surprised by the announcement, CEO Vic Gundotra said in a phone interview on Thursday. Gundotra is a former Googler, widely known as the executive behind the Google+ social network.

Specifically, Gundotra says that his company was confused by Apple’s claims that the Series 4 will be the first over-the-counter ECG testing device for consumers. AliveCor is a 49-employee startup that makes over-the-counter ECG testing devices and software, including an FDA-cleared band for the Apple Watch, called KardiaBand, and a version that attaches to a smartphone, called Kardia.

Gundotra was also surprised by Apple’s claims of ECG primacy

“We were watching [the announcement], and we were surprised,” Gundotra said. “It was amazing, it was like us being on stage, with the thing we’ve been doing for 7 years,” referring to AliveCor’s product for detecting atrial fibrillation  (AFib), a tough-to-spot heart disorder that manifests as an irregular, often quick heart rate that can cause poor circulation.

“Although when they said they were first to go over-the-counter, we were surprised,” he continued. “Apple doesn’t like to admit they copy anyone, even in the smallest things. Their own version of alternative facts.”

One man’s alternative fact is another (less polite) man’s lie.

Gundotra apparently views Apple’s entry as a good thing

“We love that Apple is validating AFib; just wait until you see what AliveCor is going to do next,” he said. “We were a great restaurant in a remote section of town, and someone just opened a giant restaurant right next to us, bringing a lot more attention.”

And as I pointed out previously, the AliveCor mobile ECG device (not the Kardia Band) is significantly cheaper than an Apple Watch and has multiple studies showing its accuracy. Interestingly, Gundotra indicates AliveCor sales has increased after the Apple announcement,.

“Ours is $99, theirs is $399, our sales popped yesterday, big time,”

Antialternafactively Yours,

-ACP

The New Apple Watch 4: Cardiac Accuracy Unknown, “Game-Changing” Benefits Overblown

On February 10, 2014 AliveCor, Inc. announced that its heavily validated personal  mobile ECG monitor had received FDA over-the counter clearance. Previously the device, which allows recording of a single-lead ECG and, in conjunction with a free smart-phone app, can diagnose atrial fibrillation was only available by prescription.

Since 2013, I have been successfully using this device with my patients who have atrial fibrillation (and writing about it extensively)

Apple COO Jeff Williams standing in front of (presumably) an ECG obtained by Apple Watch 4. It’s OK quality (but smallish p waves). Is that the best they could do? Notice that it is making a diagnosis of sinus rhythm. This PDF can be mailed “to your doctor.”

I was shocked, therefore, to hear the COO of Apple, Jeff Williams, announce that Apple will be offering in its new Apple Watch 4  “the first ECG product offered over the counter directly to consumers.”

This seemed blatantly inaccurate as AliveCor’s device clearly preceded by 4 years Apple’s claim.

Furthermore, AliveCor’s Kardia Band which converts any Apple Watch into a single-lead ECG  (which I’ve written about here and here) has been available and providing the Apple Watch-based ECGs since November 30, 2017.

AliveCor has an outstanding website which documents in detail all the research studies done on their products (there are dozens and dozens of linked papers) and all of their press releases dating back to 2012. It also explains in detail how the product works.

The title of their November 30, 2017 release was  FDA Clears First Medical Device Accessory for Apple Watch®

AliveCor shortly thereafter (December 12, 2017) announced Smart Rhythm , an Apple Watch app that monitors your rhythm and alerts you if it thinks you are in atrial fibrillation. I’ve discussed Smart Rhythm here.

Apple’s Watch will tell you that you are not in atrial fibrillation. Given that we don’t know how accurate it is, should that be reassuring?

The new Apple Watch’s rhythm monitoring app sounds a lot like Smart Rhythm but without any of the documentation AliveCor has provided.

So, within 10 months of Alivecor providing the world with the first ever wearable ECG (and proven its accuracy in afib) Apple seems to have come out with a remarkably similar product.

The major difference between Apple and AliveCor is the total lack of any reviewable data on the accuracy of the Apple device. Yes, that’s right Apple has provided no studies and no data and we have no idea how accurate its ECG device is (or its monitoring algorithm).

For all we know, it could diagnose sinus rhythm with frequent APCS or PVCs consistently as atrial fibrillation, sending thousands of Watch 4 wearers into a panic and overloading the health care system with meaningless alerts.

Apple’s website claims

Apple Watch Series 4 is capable of generating an ECG similar to a single-lead electrocardiogram. It’s a momentous achievement for a wearable device that can provide critical real-time data for doctors and peace of mind for you.

Apple’s “momentous achievement” was actually achieved 10 months earlier by AliveCor and if its monitoring algorithm and ECG system are significantly worse than the proven AliveCor system they will be destroying the peace of mind of users.

Electrodes built into the Digital Crown and the sapphire back crystal allow sensing of cardiac electrical signals. Did Apple get this idea from AliveCor?

After describing the Apple Watch’s new health features, Jeff Williams introduced Ivor Benjamin, MD, the President of the American Heart Association. Benjamin proceeded to describe the new Apple Watch cardiac features as “game-changing”, noting that the AHA is committed to helping patients be “proactive.”

Does  Benjamin have access to the accuracy of the Apple Watch ECG sensor? If so, he and the AHA should immediately share it with the scientific community. If not, by endorsing this feature of the Watch he should be ashamed. Users need to know if he or the AHA was paid any money for this appearance. Also, we should demand to know if (as the prominent AHA logo suggested and news reports implied) the AHA is somehow endorsing the Apple Watch.

Frequent readers know I’m a huge Apple fan but this Apple Watch business makes me think something is rotten in the state of Apple.

Skeptically Yours,

-ACP

Update On The Kardia Band Apple Watch Accessory: Accuracy In Atrial Fibrillation Pre and Post Cardioversion

As I described here, the Kardia Band (KB) is an FDA-approved Apple Watch accessory available to the general public without a prescription which records a high quality single-lead ECG.

I’ve been using mine now for a while and can confirm the ease and accuracy of the ECG recordings it makes. I find recordings made with my Apple Watch/Kardia Band are reliably high quality with minimal artifact (unless I’m running on a treadmill.)

Once the 30 second recording is completed, the Kardia app on the Apple Watch takes about 5 seconds to process the information using an AI algorithm and then makes a determination of normal sinus rhythm (NSR), atrial fibrillation or unclassified.

 

 

The New Study

A study published in the June JACC examined the accuracy of  Alivecor’s Kardia Band in detecting atrial fibrillation (AF.)

In the JACC study, investigators from the Cleveland Clinic studied  100 consecutive patients presenting for cardioversion from AF with recordings made before  and after the procedure. KB interpretations were compared to 12 lead ECGS read by electrophysiologists.

KB interpretations  identified AF with  93% sensitivity and 84% specificity. Of the total 169 recordings, 34% were unclassified due to short recordings, low-amplitude p waves, and baseline artifacts.

The authors concluded that the KB algorithm for AF detection, when it is supported by a physician review can reliably differentiate AF from NSR.

(Of note the lead author on this study is on the advisory board of Alivecor the maker of the KB and AliveCor (AliveCor, Mountain View, CA) provided the Kardia Band monitors which were connected to an Apple Watch and paired via Bluetooth to a smartphone device for utilization in the study. AliveCor was not involved in the design, implementation, data analysis, or manuscript preparation of the study.)

My Updated Kardia Experience

I have found the standard Kardia device to be immensely helpful in the management of my afib patients before and after cardioversions (see my prior description here). The paper mentions that 8% of these pre-cardioversion patients showed up for the procedure in normal sinus rhythm, noting that

For each of these patients, the automated KB algorithm did not erroneously identify AF, and the physician interpretation of the KB recording correctly confirmed SR in each case.

Needless to say, it is better to find out a cardioversion is not needed before the patient shows up for the procedure. I would estimate this happens about 5-10% of the time in my practice.

The Kardia device or the KB is also really helpful post cardioversion. If the patient makes daily recordings (which I can review on Kardia Pro online) h/she and I know exactly how long sinus rhythm persisted before reverting back to AF.

This is important information which impacts future management decisions.

Kardia Band Versus Standard Kardia Device

None of my patients have purchased the Kardia Band most likely due to the cost and the fact that they don’t have an Apple Watch. If you have an Apple Watch and want to monitor your heart rhythm I think the KB is a good choice. Otherwise, the original AliveCor mobile ECG device continues to do a fantastic job (in conjunction with Kardia Pro, see here).

The combination of Kardia and Kardia Pro has substantially reduced my use of expensive and annoying long term monitors in my AF population.

In my next update on the KB I will share a reader’s real world description of the pros and cons of the KB (with Smart Rhythm monitoring) in a patient post cardioversion for AF.

Skeptically Yours

-ACP

Is It Safe To Consume Grapefruit If You Take The Blood Thinner Apixiban (Eliquis)?

A patient of mine with atrial fibrillation taking the blood thinner eliquis told me that she had eaten grapefruit for two days in a row and then developed a nose bleed. She had heard of the interaction between grapefruit and certain medications and wondered if this had caused her nose bleed.

I was unaware of any eliquis/grapefruit interaction but thought this was a remarkably astute observation and question and set about to research it properly.

Among other things, I discovered that some researchers believe the grapefruit-drug interaction to be a widespread , underreported and  highly significant problem while others feel it is overblown and a rare cause of clinically important side effects.

For those, who prefer not to delves into the gory details I give you the crux of what BMS/Pfizer, the makers of apixiban (Eliquis) told me and with which I agree:

When consumed in usual dietary volumes, grapefruit juice is considered a moderate inhibitor of CYP3A4. Therefore a dose adjustment of apixaban is not expected to be required.

In other words, although not formally studied, there is no evidence that apixiban levels are increased by moderate grapefruit juice ingestion to a degree that would cause significant bleeding complications.

Although multiple sites on the internet (including the unreliable Web MD) will tell you of a potentially dangerous interaction between grapefruit and apixiban this theoretical interaction has not proven clinically significant.

Interactively Yours,

-ACP

Below is the full text of the letter BMS sent me

Bristol-Myers Squibb and/or Pfizer have not conducted any studies evaluating the concomitant use of apixaban and grapefruit juice. The decision to prescribe apixaban in patients who are concomitantly taking grapefruit juice is a clinical decision for the treating physician based on the individual’s circumstances and inaccordance with the full prescribing information for apixaban.

While in vitro data indicates grapefruit juice can inhibit both cytochrome P450 (CYP) 3A4 and P-glycoprotein (P-gp), clinical evidence suggests that grapefruit juice mediated interactions would be primarily due to the inhibition of CYP3A4 and the contribution of P-gp inhibition may be limited.1, 2 When consumed in usual dietary volumes, grapefruit juice is considered a moderate inhibitor of CYP3A4.1 Therefore a dose adjustment of apixaban is not expected to be required.

Apixaban is eliminated from the body through multiple pathways, with approximately 25% of the administered dose recovered as metabolites. The main metabolic pathway for apixaban is through CYP3A4/5, with minor contributions from other CYP isoenzymes. Apixaban is also a substrate of transport proteins P-gp and breast cancer resistance protein.3

  1. [1]  Hanley MJ, Cancalon P, Widmer WW,et al. The effect of grapefruit juice on drug disposition. Expert Opin Drug Metab Toxicol. 2011; 7(3):267-286.
  2. [2]  Farkas DG and Greenblatt DJ. Influence of fruit juices on drug disposition: discrepancies between in vitro and clinical studies. Expert Opin Drug Metab Toxicol. 2008;4(4):381-393.
  3. [3]  Eliquis® (apixaban) Package Insert. Bristol-Myers Squibb Company, Princeton, NJ and Pfizer Inc, New York, NY

Why I Favor The Early Restoration and Maintenance of Sinus Rhythm In Most Patients With Atrial Fibrillation

When your heart stops beating synchronously and goes into atrial fibrillation all sorts of bad things begin happening. The normal mechanisms for controlling how fast your heart is beating are lost and in most individuals the rate accelerates inappropriately. The strength of the atria’s pumping force and the normal precise synchronization of the upper and lower chambers  deteriorates.

You might logically conclude then, that all efforts should be focused on converting the rhythm back to normal,  for in the normal rhythm the heart can go back to beating regularly, efficiently  and synchronously the way nature intended.

Maintenance of this normal (sinus) rhythm (NSR), presumably, will eliminate the high risk of clot formation and stroke associated with atrial fibrillation (AF) , prevent heart failure, and prolong life.

AF is abnormal. the thinking goes, and normality is the state in which we were born and to which we should seek to return.

Is Normal Sinus Rhythm Superior to Atrial Fibrillation?

It would be hard to find a cardiologist who doesn’t believe that patients are better off in NSR than AF but the more difficult question and more clinically relevant question is “if your heart has gone into atrial fibrillation will you do better in the long run with a strategy of trying to convert the rhythm back to normal and keep it there (which involves medications (anti-arrhythmic drugs) and/or procedures) versus just controlling the heart rate and letting the atria fibrillate to their heart’s content.

Unfortunately, studies that have compared the  strategy of maintaining NSR (rhythm control) with leaving the heart to fibrillate have not shown a benefit in preventing stroke or death in the patients randomized to rhythm control

To quote the 2016 European Society of Cardiology  guidelines on AF

Although many clinicians believe that maintaining sinus rhythm can improve outcomes in AF patients, all trials that have compared rhythm control and rate control to rate control alone (with appropriate anticoagulation) have resulted in neutral outcomes.

(see references for this below)

However, findings from these studies can only be applied to the population studied, thus younger patients without structural heart disease and patients over age 80, who combined constitute up to 50% of the AF group were not represented in these comparison studies.

The elderly are more dependent on normal atrial function for maintenance of cardiac output and are more likely to have issues with anticoagulation, thus they may benefit more from maintenance of NSR than the young.

In addition, much of the morbidity and mortality in these trials was related to failure to anticoagulate patients who were in NSR. The stroke risk persists in this group, we have learned, because they may not recognize when AF occurs. Therefore, most authorities recommend lifelong  anticoagulation for those who have had  AF and have significant risk factors for stroke whether they

These and other  reasons for the  failure of the so-called rhythm strategy have long been debated but most experts blame it on the absence of a safe and effective method for maintaining NSR: the drugs  and procedures (catheter ablations) we have used create their own problems and don’t always work.

Why Then, Do I And Most Cardiologists Recommend Efforts To Maintain Normal Sinus Rhythm?

This is a question almost no AF patients ask. It is quite easy for a treating cardiologist to invoke the “normality” of NSR and the dangers of AF and most AF patients require no more justification. But they really should demand a compelling rationale.

For those who feel badly in AF despite treatment with medications to keep the heart rate normal cardiologists can justify the efforts because we are making patients feel better

The ESC guideline summarizes this as follows

For now, rhythm control therapy is indicated to improve symptoms in AF patients who remain symptomatic on adequate rate control therapy.

However, there are important limitations to letting symptoms guide our approach.

For one, symptoms are in the mind of the patient and cannot be measured objectively. For another, the symptoms a patient experience could be from something other than AF.

You might think that we can objectively verify that symptoms are due to atrial fibrillation if they resolve after converting the patient to sinus rhythm but symptoms can be heavily influenced by the patient’s perception that something has been done to fix them. This placebo effect is well-known from clinical trials of medications but may be even more prominent after procedures.

It is not uncommon for me to perform a cardioversion on a patient , see the patient in follow-up in AF and have them tell me how tremendous they have felt since the cardioversion.

The difficulty of objective symptom measurement is one of many factors contributing to  a tremendous variability in how cardiologists approach rhythm control  for AF.

Some cardiologists have concluded that maintaining SR is rarely worth the trouble and they add rate controlling medications and anticoagulants and see the patient back once a year. Let’s call these NSR Nihilists

On the other end of the spectrum, cardiologists who are true believers in the value of NSR run their patients through multiple anti-arrhythmic drugs, cardioversions and ablations to achieve that goal. When this is done excessively such cardiologists become NSR Overtreaters.

I put myself somewhere in between the Nihilists and the Overtreaters and consider myself a rational NSR advocate or enthusiast but one who has a very clear understanding of the dangers of over treatment and who recognizes that many patients have done well for decades in permanent AF.

Recording and observation of symptoms depends heavily  on the recorder and observer: the Nihilists are loath to find symptoms attributable to AF whereas the Overtreater may see any and all symptoms as due to AF.

Like other areas in life and medicine we have to look closely at hidden motivations and conflicts of interest to fully understand variations in behavior.

If one were to analyze the financial benefit from testing and procedures to treating cardiologists I have no doubt that the Overtreaters are getting a lot more than the Nihilists.

In an ideal world, cardiologists would not benefit more financially based on what procedures they recommend be performed on their patients but this is not the reality.

Reasons For NSR Maintenance Beyond Symptoms

 I’ve mentioned two solid reasons for aggressively trying to maintain NSR in a previous post:

A second group of patients, I think, benefits the most from maintaining sinus rhythm (rhythm control strategy): patients who develop heart failure when they go into AF.

These patients may not even know they are in AF because they don’t feel the typical symptoms initially.  After a few days or weeks or months of being in afib silently, however, they develop shortness of breath, weakness and leg  swelling – classic signs of heart failure.

When we look at the heart of such a patient by echocardiography, we often find one of two things causing the heart failure: a weakening of the heart muscle (cardiomyopathy) or significant leakage/backflow from the mitral valve (mitral regurgitation). Following cardioversion and maintenance of SR for weeks to months, the heart muscle strengthens back to normal and/or the mitral regurgitation improves dramatically and the heart failure resolves.

The 2014 ACC guidelines for management of AF admit the lack of randomized trials supporting maintenance of NSR but cite several factors that would “favor attempts at rhythm control” with which I generally agree. These are:

  • difficulty in achieving adequate rate control,
  • younger patient age,
  • tachycardia-mediated cardiomyopathy,
  • first episode of AF,
  • AF precipitated by an acute illness
  • patient preference.

If, after discussion of the options, a patient decides they prefer no attempts at maintaining NSR,  I try to make them aware that AF begets AF. The longer they stay in AF the larger and more diseased their atria become and the harder it is to stay in NSR with any techniques. In other words, this not a decision that can easily be reversed a few years from now if they start feeling poorly.

The ACC guidelines put it this way:

AF progresses from paroxysmal to persistent in many patients and subsequently results in electrical and structural remodeling that becomes irreversible with time . For this reason, acceptance of AF as permanent in a patient may render future rhythm-control therapies less effective. This may be more relevant for a younger patient who wishes to remain a candidate for future developments in rhythm-control therapies. Early intervention with a rhythm-control strategy to prevent progression of AF may be beneficial.

Many of the factors cited for leaning toward NSR maintenance are, of course, soft and vague.  One doctor’s young patient is another doctor’s old patient. The definition of adequate rate control is unclear. What qualifies as an acute illness?

My Approach to Maintenance of NSR

I favor a more aggressive approach to maintenance of NSR. I justify this because in my experience with meticulous attention to detail and with close monitoring of patients on anti-arrhythmic drugs I have observed that most patients do better in the long run with NSR Than AF.

Over thirty years of managing patients with AF and comparing those who are left to permanently be in AF versus those who maintain NSR  I see substantial differences. Let me cite two case examples to buttress my argument.

A 75-year-old man with permanent atrial fibrillation came under my care after his cardiologist retired. He had been in AF with rate well controlled and on anticoagulation since 2008. He is active without any symptoms.

He had an echocardiogram in 2008 with the new onset of AF and it showed a normal sized left and right atria and no valvular problems.

Over 10 years,  however, the size of both his atria have dramatically increased. His current echo shows severe enlargement of his left atrium (LA volume index=72 cm3/M2) and right atrium (RA area=26 cm2). He has developed significant leakage (regurgitation)  from both his mitral and tricuspid valves.

afmrlae

This is the norm for most patients who have been in AF for a long time.

The larger the left atrium gets over time, the more dysfunctional it becomes and the more likely clots are to form in the LA appendage. Although anticoagulation dramatically reduces the formation of LA clots, patients frequently have to come off anticoagulation for surgeries, spine injections, bleeding and other issues.

Would you rather have a left atrium that has been maintained in NSR or one that is massively enlarged and dysfunctional if you have to stop your anticoagulation?

The other exam example is of a 74 year old man whose AF was detected at the time of a colonoscopy. When I saw him he was without symptoms with normal lab and cardiac testing. We attempted one cardioversion without anti-arrhythmic drugs and within two weeks he reverted back AF. He elected not to start any anti-arrhythmic drugs and repeat the cardioversion and was doing fine when I saw him 6 months later.

However, shortly after that visit he ended up in severe heart failure with severe left ventricular  dysfunction and severe mitral regurgitation at an outside hospital. This time he agreed with a more aggressive approach to maintenance of SR and after prolonged amiodarone loading and a repeat cardioversion he has maintained SR for 6 months. The function of his left ventricle has improved to near normal (LVEF has increased to 49%) and there is no significant leakage from his mitral valve.

Whereas, most patients who feel fine in AF and elect to stay in it do well there is an unpredictable but significant number who despite adequate rate control develop cardiomyopathy and valvular regurgitation with resulting heart failure.

Medical Maintenance of SR

Yes, I’m convinced that patients can safely and effectively be maintained in SR with medical therapy and the occasional cardioversion.

I try not to fall in the camp of Overtreaters but consider myself a Rational Normal Sinus Rhythm Enthusiast and Advocate.

In my practice when atrial fibrillation reaches a point that requires addition of an anti-arrhythmic medication  I predominantly utilize two such drugs: amiodarone and flecainide.

Patients with structurally  normal hearts do well with flecainide and those with structural heart disease (heart failure, left ventricular hypertrophy, or significant coronary artery disease ) do well with amiodarone when they are monitored closely by a cardiologist with extensive experience using the drugs.

I’ll talk about each of these options  as well as cardiac ablation in detail in subsequent posts.

Antifibrillatorily Yours,

-ACP

Six studies showing no difference in outcomes between rhythm and rate control strategies.

AliveCor Mobile ECG : Ways To Minimize Low Voltage and Unclassified Recordings

Sometimes AliveCor’s Mobile ECG device yields unclassified interpretations of recordings. Understandably if you want to know whether your rhythm is normal or atrial fibrillation, the unclassified  classification can be very frustrating.

There are various caues of an unclassified tracing with different solutions.  Some unclassified recordings are due to a heart rate over 100 BPM or under 50 BPM and cannot be fixed. Similarly, some patients with ectopic beats like PVCS may consistently generate unclassified interpretations (see my discussion here).

Artifacts induced by poor recording techniques are common as a cause and almost always can be fixed.

These can be reduced by minimizing motion, extraneous noise, and maximizing contact with the electrodes.  Follow all the steps AliveCor lists here.

For me, the following step is crucial

  • If your fingers are dry, try moistening them with antibacterial wipes or a bit of lotion

And be aware the device needs to be near the microphone of your iPad or smartphone.

Low Voltage As Cause of Unclassified Kardia Recordings

Another cause of unclassified interpretations is a low voltage recording (which I initially discussed here.).

At the recent ACC meeting I asked Alivecor inventor and CEO David  Albert if he had any solutions to offer for those who obtain unclassified low voltage AliveCor tracings.

He told me that the cause is often a vertically oriented heart and that recording using the lead II technique can often solve the problem.

Lead II involves putting one electrode on your left knee and one your right fingers as described in this video:

Reader “J”  recently sent me a series of Kardia ECG recordings,  some of which were unclassified , some normal and one read as possible atrial fibrillation.

The unclassified and possible AF tracings looked like this:

 

They were very regular with a rate between 80 and 100 BPM but they totally lacked p waves. It was not clear to me what the rhythm was on these tracings.

Other tracings had lowish voltage but the p waves were  clearly visible  and Kardia easily classified them as normal

Lowish voltage with p waves (Type B)

 

Good QRS voltage with clear p waves ( Type B

 

Still others had improved QRS voltage with clear p waves and were also classified  appropriately as normal

 

After some back and forth emails we discovered that the ECG recordings with no p waves were always  made using the chest lead recording.   AliveCor-describes this as follows:

  • For an Anterior Precordial Lead, the device can be placed on the lower left side of the chest, just below the pectoral muscle. The bottom of the smartphone or tablet should be pointing towards the center of the body.

Mystery solved!

There is an abnormal cardiac rhythm that is regular between 80 and 100 BPM with no p waves and normal QRS called junctional tachycardia but in J’s case the absent p waves are related to the recording site.

Also, note that for this young woman the lead II voltage (Type B tracing) is much higher than the standard, lead I voltage (type A tracing).

Lead II With Pants On

After Dr. Albert told me of the advantages of Lead II I responded that it seemed somewhat awkward to take one’s pants off in order to make an ECG recording.

He immediately reached in his suit pocket and pulled out a pen-shaped device and began spraying a liquid on his left knee.

To my surprise he was able to make a perfect Lead II recording without taking his pants off!

Lessons learned from reader J and Dr. A:

  • Consider trying different leads if the standard Lead I (left hand, right hand) is consistently yielding unclassified ECG recordings
  • Try Lead II (left knee, right hand) to improve voltage and recording quality
  • You can record off your knee even with your pants on if you are prepared to spray liquids on your pants

Pantsonically Yours,

-ACP

Can AliveCor’s Mobile ECG Device Combined With Its Kardia Pro Cloud-Based Platform Replace Standard Long Term Rhythm Monitors?

In March of 2017 AliveCor introduced Kardia Pro, a cloud-based software platform that allows physicians to monitor patients who use the Kardia mobile ECG device.

I have been utilizing the Kardia mobile ECG  device since 2013 with many of my atrial fibrillation (AF)  patients and have  found it be very useful as a personal intermittent long term cardiac monitor. (see here and here)

I signed up for the Kardia Pro service about 3 months ago and all of my patients who purchased Kardia devices prior to March of 2017 have been migrated automatically to Kardia Pro by AliveCor.

Now (post March 2017),  patients who acquire a Kardia device must sign up for the Kardia Pro service at $15 per month to connect with a  physician.

I think this is money well spent and I’ll demonstrate how the service works with a few examples.

Monitoring Patients With Atrial Fibrillation

 I saw a 68 year old man with persistent atrial fibrillation that was first diagnosed at the time of pneumonia in late 2017.

He underwent a cardioversion after recovering from the pneumonia but quickly reverted back to AF. His prior cardiologist offered him the option of repeat cardioversion and long term flecainide therapy for maintenance of normal sinus rhythm (NSR) but he declined.

When I saw him for the first time in the office  a  month ago I  listened to his heart and to my surprise, noted a regular rhythm: an AliveCor recording in the office confirmed he was in NSR. The patient had been unaware of when he was in or out of rhythm

We discussed methods for monitoring his rhythm at this point which include a 24 Holter monitor, a 7 to 14 day Long Term Monitor, a Cardiac Event Monitor and a Mobile Cardiac Outpatient Telemetry device. These devices are helpful and although expensive are often covered by insurance.  They require wearing electrodes or a patch continuously and the results are not immediately available.

I also offered him the option of monitoring his AF using a Kardia device with the recordings connected to me by Kardia Pro.

He purchased the device on his own for $99, downloaded the app for his smartphone and began making recordings.

I enrolled him in my Kardia Pro account and he received an email invitation with a code that he entered which connected his account with mine, allowing me to view all of his recordings as they were made.

When I log into my Kardia Pro account I can now view a graphic display of the recordings he has made with color coding of whether they were considered normal or abnormal by Kardia.

The patient overview page also displays BP information if the patient is utilizing certain Omron devices which work with Kardia.

kardia pro wc monthly

The display shows that after our office visit he maintained NSR for 3 days (green dots) and then intermittently had ECG recordings classified as AF (yellow dots) or unclassified (black).

The more he used the device and got feedback on when he was in or out of rhythm the more he was able to recognize symptoms that were caused by AF.

I can click on any of the dots and six second strips of the full recording are displayed.  In the example below I clicked on 2/27 which has both an unclassified recording (which is atrial flutter) and an AF recording

Clicking on the ECG strips brings up  the full 30 second recording on a page that also allows me to assign my formal  interpretation. In the example below I added atrial flutter as the diagnosis, changing it from Kardia’s unclassified (Kardia’s algorithm calls anything it cannot clearly identify as AF that is over 100 BPM as unclassified.)

The ECG can then be archived or exported for entry into an EHR.

The benefits of this patient being connected
to me are obvious: we now  have an instantaneous patient-controlled method for knowing what his cardiac rhythm is doing whether he is having symptoms or not.

This knowledge allows me to make more informed treatment decisions.

The Kardia Pro Dashboard

When I  log into kardia pro I see this screen.

dashboard karia pro It contains buttons for searching for a specific patient or adding a new patient. Adding new patients is a quick and simple process requiring input of patient demographics including  email and birthdate.

From the opening screen you can click on your triage tab. I have elected to have all non normal patient recorded ECGS go into the triage tab.

Other Examples

Another patient’s Kardia Pro page shows that he records an ECG nearly every day and most of the time Kardia documents NSR in the 60s. Overall, he has made 773 recordings and 677 of them were NSR, 28 unanalyzed (due to brevity) , 13 unclassified and 55 showing AF.

Monitoring Rate  Control  In Patients With AF and Reversion Post-Cardioversion

Another patient I saw for the first time recently has had long-standing persistent AF.  His previous cardiologist performed an electrical cardioversion a year ago but the patient reverted back to AF in 40 hours.   Before seeing me he had purchased a Kardia mobile ECG device and was using it  to monitor his heart rate.

After he accepted my email invitation to connect via Kardia Pro I was able to see his rhythm and rate daily. The Kardia Pro chart belowshows his daily heart rate while in atrial fibrillation. We utilized this to guide titration of his rate controlling medications.  Such precise remote monitoring of heart rate in AF (which is often difficult to accurately assess by standard heart rate devices) obviates the need for office visits for 12 lead ECGs or periodic Holter monitors.

I performed a  second cardioversion on him after which he made  daily recordings documenting maintenance of NSR. With this system we can determine exactly when AF returns, information which will be very helpful in determining future treatment options.

Kardia Pro Plus Kardia Mobile ECG Creates Personal Intermittent Long Term Rhythm Monitor

There are many potential applications of the Kardia ECG device beyond AF monitoring (assessing palpitations, PVCs, tachycardia, etc.) but they are all enhanced when the device is combined with a good cardiologist connected to the device by Kardia Pro.

I’ve gotten spoiled by the information I get from my AF patients who are on  Kardia Pro now. When they call the office with palpitations or a sense of being out of rhythm I can determine within a minute what their rhythm is wherever I am (excluding tropical beaches and mountain tops)  or wherever the patient is (for the most part.)

On the other hand patients who are not on Kardia Pro have to come into the office for  12-lead ECGs. When they call I feel like my diagnostic tools are limited. Such patients usually end up getting one of the standard Long Term Monitoring (LTM) Devices. If I am fortunate, after a  few days to weeks , the results of the LTM will be faxed to my office.

I am optimistic based on this early experience with Kardia Pro that ultimately this service in conjunction with the Kardia Mobile ECG device (or similar products) will replace many of the more expensive and inconvenient long term monitoring devices that cardiologists currently use.

Skeptically Yours,

-ACP

Kardia’s Fascinating SmartRhythm For Apple Watch Is Very Cool: Will It Allow Personal Atrial Fibrillation Detection?

The KardiaBand for Apple Watch from AliveCor has delivered on  its  unique promise of a medical grade single lead ECG recording made by placing your thumb on your wristwatch band.

The ECG recordings are equivalent in quality to those made by their previously available KardiaMobile (see my prior post here.) After more experience with the Band I think the ease of recording is superior to KardiaMobile and the ability to discriminate atrial fibrillation from normal sinus rhythm is similar to KardiaMobile.

By combining either a KardiaBand or a KardiaMobile device with Kardia’s SmartRhythm monitoring system for Apple Watch we now have the promise of personal monitoring to detect atrial fibrillation.

What is SmartRhythm?

SmartRhythm is AliveCor’s term for its system for monitoring your heart rate and activity levels in order to identify when your rhythm is abnormal.

The system “takes your heart rate and activity data gathered from the Apple Watch and evaluates it using a deep neural network to predict your heart rate pattern.”

The heart rate is obtained from the Apple Watch PPG sensor every 5 seconds.  If it differs from what is predicted SmartRhythm notifies you to record an ECG.

If you’d like to learn more detail about the development of SmartRhythm and how it functions, AliveCor has an excellent informational piece here.

You can choose to have the Kardia SmartRhythm display come up whenever your Apple Watch awakens. It’s got information on your heart rate and activity over the preceding several hours

SmartRhythm display. The light blue vertical bars representing heart rate range during an interval. The continuous lines above and below the vertical bars show the boundaries of heart rate predicted by the neural network based on your measured activity from the Watch accelerometer. . Upper left corner is yellow triangle indicating that the system detected potential abnormal rhythm and recommended a recording. The dot on the right is an ECG recording. The vertical bars at the very bottom represent steps taken during an interval

The AliveCor FAQ on SmartRhythm stresses that a notification does not always mean an abnormal rhythm. Clearly false positives can and will occur. The first day I wore my KardiaBand I had several of these.

Causes for false positives include exercise that Apple Watch couldn’t detect, stress or anxiety-in other words, situations where your heart rate is higher than predicted by how much activity you are doing.

The long term record of your SmartRhythm recordings resides on your iPhone . Here’s my record for the last week

Note that Kardia , in addition to tracking your heart rate, also shows you by the green, yellow and orange dots, the times that ECG recordings were made.

Green dots indicate recordings classified as normal and yellow as “unclassified.” In my case most of the unclassified recordings were due to heart rate >100 BPM associated with exercise.

There is one orange dot indicating that Kardia felt the ECG showed “possible atrial fibrillation.”

This happened when I took my Apple Watch off my wrist and put it on one of my patients who has permanent atrial fibrillation. I had him push on the KardiaBand sensor to make an ECG recording and it was correctly identified as atrial fibrillation.

Thus far I have had no notifications of “possible atrial fibrillation” while I have been wearing my watch thus the false positive rate appears acceptably low.

How Does SmartRhythm Perform During Exercise?

I checked out SmartRhythm’s ability to predict normal and abnormal  heart patterns by wearing it during a session on my indoor bike trainer. The device did a good job of tracking both my heart rate and activity during the workout.  You can view the most recent data by viewing your Apple Watch screen during the workout as below

Or for more detailed information you can view the complete history on your iPhone as below

The system accurately tracked my heart rate and activity (although AliveCor lists stationary bike as an activity that may result in false positives). During a session of weights after the aerobic workout despite erratic heart rates and arm movements it did not notify me of an abnormality. I also did 100 jumping jacks (which involves wildly flailing my arms) and the heart rate remained within the predicted boundaries.

What is more remarkable is that I was able while cycling at peak activity to make a  very good quality ECG recording by taking my right hand off the handle bar and pushing my thumb down on the KardiaBand sensor on my left wrist.

This recording clearly  displays p waves and is sinus tachycardia. It’s unclassified by Kardia because the rate is >100 BPM.

Afib Patient Experience

One of my patients last week, a 70 year old woman with paroxysmal atrial fibrillation, had already set up SmartRhythm monitoring on her Apple Watch.

The Apple Watch face of my patient with the Kardia icon bottom right. Note also that she has a Starbucks reward available

I have this patient like many of my afibbers utilizing KardiaMobile to check an ECG when  they think they are in afib.

However, she, like many of my afib patients, is totally unaware when her heart is out of rhythm. Such asymptomatic patients are alerted to the fact that they are in afib by detection of a rapid heart rate (from a heart rate tracking wearable or BP monitor) or an irregular heart beat (from BP monitor or by someone checking the pulse) or by a random recording of an ECG.

She’s started using SmartRhythm in the hopes that it will provide a reliable and early warning of when she goes into atrial fibrillation.

We discussed the possibility of stopping the flecainide she takes to maintain normal rhythm to test the accuracy of the SmartRhythm system for detecting atrial fibrillation in her but decided not to. She’s on an oral anticoagulant and therefore protected from stroke so development of atrial fibrillation will not be dangerous for her.

I eagerly await the first real world, real patient reports of SmartRhythm’s performance in atrial fibrillation detection.

If there are any afibbers out there who have had an episode of atrial fibrillation detected by  SmartRhythm please let me know the details.

We need such anecdotes along with controlled trials to determine how useful SmartRhythm will be as a personal wearable system for detection of afib.

Fastidiously Yours,

-ACP

N.B. I’ve copied a nice section from AliveCor’s website which describes in detail the difference between measuring heart rate from the PPG sensor that all wearable devices use versus measuring the electrical activity of the heart with an ECG.

To understand how Kardia for Apple Watch works, let’s start by talking about your heart, how the Apple Watch and other wearable devices can measure your heart rate, and how an ECG is different from the information you get from a heart rate sensor alone.

Your heart is a pump. With each beat of your heart, blood is pumped through your arteries and causes them to expand. In the time between beats, your arteries relax again. On the underside of the Apple Watch is a sensor, called a photoplethysmogram (PPG), that uses green and infrared LEDs to shine light onto your skin, and detects the small changes in the amount of light reflected back as your arteries expand and relax with each beat of your heart. Using this sensor, the Apple Watch can tell how fast your heart is beating, and how your heart rate changes over time.

But, your heart rate does not tell everything there is to know about your heart. The PPG sensor on the Apple Watch can only see what happens after each heartbeat, as blood is pumped around your body. It can’t tell you anything about what is making your heart beat, or about what happens inside your heart during each beat. An ECG is very different, and tells you a lot more!

Three hearts showing a P-Wave, QRS-Complex, and a T-Wave

An ECG measures the electrical activity in your heart muscles. It detects the small pulse of electricity from the sinoatrial node (the body’s natural pacemaker, which normally initiates each heartbeat) and the large electrical impulses produced as the lower chambers of the heart (the ventricles) contract and relax. By looking at an ECG, a doctor can discern a wealth of information about the health and activity of your heart muscle, much more than you can tell from your heart rate alone. ECGs are the required gold standard for diagnosis of arrhythmias and many cardiac abnormalities, and can even be used to see evidence of acute heart attacks and even events that have occurred in the past.

Research has shown that taking frequent ECGs increases the likelihood of detecting certain arrhythmias, and decreases the mean time to diagnosis.

Review of Kardia Band Mobile ECG for Apple Watch

The skeptical cardiologist has been evaluating the Kardia Band from AliveCor which allows one to record single lead medical grade ECGS on your Apple Watch. What follows is my initial experience with setting up the device and using it to make recordings.

After ordering my Kardia Band for Apple Watch on 11/30  from AliveCor the device appeared on my door step 2 days later on a Saturday giving me most of a Sunday to evaluate it.

What’s In The Box

Inside the box I found one small and one large black rubber wrist watch band

The larger one had had a small squarish silver metallic sensor and the smaller one had a space to insert a sensor. It turns out my wrist required the smaller band and it was very easy to pop out the sensor and pop it into the smaller band.

After replacing my current band with the Kardia band (requires pushing the button just below the band and sliding the old band out then sliding the new one in) I was ready to go.

The Eternal  fiancée did not complain about the appearance of the band so I’m taking that to mean it passes the sufficiently stylish test. She did inquire as to different colors but it appears AliveCor only has one style and one color to choose from right now.

I have had problems with rashes developing with Apple’s rubbery band and switched to a different one but thus far the Kardia band is not causing wrist irritation.

Set UP

I didn’t encounter any directions in the box or online so I clicked on the Kardia app on the watch and the following distressing message appeared.

Prior to 11/30 Kardia Band only worked in certain countries in Europe so I suspected my AliveCor app needed to be updated.

I redownloaded the Kardia app from the Apple App Store , deleted it off my Watch and reinstalled it.

I was thrilled when the app opened up and gave me the following message

However, I was a little puzzled as I was not aware that setting up Smart Rhythm was a requirement to utilize the ECG recording aspect of Kardia Band. Since I have been granted a grandfathered Premium membership by AliveCor I knew that I would have access to Smart Rhythm and went through the process of entering my name and email into the Kardia app to get this started.

Alas, when the Watch Kardia app was accessed after this I continued to get the same screen. Clicking on “need help” revealed the following message:

Bluetooth was clearly on and several attempts to restart both the watch and the iPhone app did not advance the situation.

I sent out pleas for assistance to AliveCor.

At this point the Eternal Fiancee had awoken and we went to Sardella for a delightful brunch . I had this marvelous item:

Eggs Benedict Raviolo, Mortadella, Bread Ricotta, Egg Yolk, Brown Butter Hollandaise, Potatoes 15.
 Later on that day I returned to my Kardia Band iPhone and deinstalled, reinstalled , reloaded and restarted everything.
The First Recording
At this point it worked and I was able to obtain my first recording by pushing the record ECG button and holding my thumb on the sensor for 30 seconds.
I’ve made lots of recordings since then and they are good quality and have accurately recognized that I am in normal sinus rhythm.
The Smart Rhythm component has also been working. Here is a screen shot of today’s graph.
You’l notice that the Smart Rhythm AI gave me a warning sometime in the morning (which I missed) as it felt my rhythm was abnormal. I missed making the recording but am certain that I was not in afib.
Comparison of the Kardia Band recording (on the right) versus the separate Kardia device recording (on left)  shows that they are very similar in terms of the voltage or height of the p waves, QRS complexes and T waves. 
I felt a palpitation earlier and was able to quickly activate the Kardia Watch app and make a recording which revealed a PVC.
 In summary, after some difficulty getting the app to work I am very pleased with the ease of recording, the quality of the recording and the overall performance of Kardia Band. The difficulties I encountered might reflect an early adoption issue which may already be resolved. Please give me feedback on how the device set up worked for you.
I’ll be testing this out on patients with atrial fibrillation and report on how it works in various situations in future posts.
After more experience with the Smart Rhythm monitoring system which I think could be a fantastic breakthrough in personal health monitoring I’ll give a detailed analysis of that feature.
Everwatchingly Yours,
-ACP

AliveCor’s Kardia Band Is Now Available: Mobile ECG On Your Apple Watch

AliveCor has finally gotten approval from the FDA to release its Kardia Band in the United States.

The skeptical cardiologist is quite excited to get his hands (or wrist) on one and just gave AliveCor $199 to get it.

The device incorporates a mobile ECG sensor into a wrist band that works with either 42 or 38 mm Apple watches. I’ve written extensively about AliveCor’s previous mobile ECG product (here and here) which does a good job of recording a single lead ECG rhythm strip and identifying atrial fibrillation versus normal rhythm,

Hopefully, the Kardia Band will work as well as the earlier device in accurately detecting atrial fibrillation.

According to this brief video to make a recording you tap the watch screen then put your thumb on the sensor on the band.

The app can monitor your heart rate constantly and alerts you  to make a recording if it thinks you have an abnormal rhythm.

I was alerted to the release of Kardia by Larry Husten’s excellent Cardio Brief blog and in his post he indicates that the alert service , termed Smart Rhythm,  requires a subscription of $99 per year.:

AliveCor simultaneously announced the introduction of SmartRhythm, a program for the Apple Watch that monitors the watch’s heart rate and activity sensors and provides real-time alerts to users to capture an ECG with the Kardia Band. The program, according to an AliveCor spokesperson, “leverages sophisticated artificial intelligence to detect when a user’s heart rate and physical activity are out of sync, and prompts users to take an EKG in case it’s signaling possible abnormalities like AFib.”

The Kardia Band will sell for $199. This includes the ability to record unlimited ECGs and to email the readings to anyone. The SmartRhythm program will be part of the company’s KardiaGuard membership, which costs $99 a year. KardiaGuard stores ECG recordings in the cloud and provides monthly summary reports on ECGs and other readings taken.

AliveCor tells me my Kardia Band will be shipped in 1-2 days and I hope to be able to give my evaluation of it before Christmas.

Please note that I paid for the device myself in order to avoid any bias that could be introduced by receiving largesse from AliveCor.

Proarrhythmically Yours

-ACP

N.B. Larry Husten’s article includes some perspective and warnings from two cardiologist and can be read here.

Another article on the Kardia Band release suggests that the Smart Rhythm program at $99/ year is a requirement.

Perhaps, AliveCor’s David Albert can weigh in on whether the annual subscription is a requirement for making recordings or just allows the continuous monitoring aspect.